

Comparison of Lidars, German Test Station for Remote Wind Sensing Devices

Axel Albers, A.W. Janssen, J. Mander

Deutsche WindGuard Consulting GmbH

Oldenburger Straße 65, D-26316 Varel a.albers@windguard.de

testing- and calibration laboratory with quality management system according EN ISO/IEC 17025:2005

for power curve measurements, wind measurements, wind resource assessments

for power curve measurements

Contents

- Test Station for remote wind sensing devices
- Presentation of test results of two laser based wind measurement systems (lidar)
- Status and outlook on system integration in wind engineering

Test Station for Remote Wind Sensing Devices near Rysum (North Sea Coast)

- 1. target: test of individual lidar and sodar before field application (analogous to calibration of cup anemometers in wind tunnel)
- 2. target: type specific classification of lidars und sodars (analogous to classification of cup anemometers according to IEC 61400-12-1)
- 135m-Mast provided by Enercon since May 2008, cup anemometers and 3Dsonics at heights 135m, 105m, 71m, 35m
- already 4 Windcubes (lidar) series models tested

LIDAR: Light Detection And Ranging

Deutsche WindGuard Consulting GmbH

ZephIR (Natural Power)

• ZephIR: definition of measurement position by focussing of the laser beam, continuous laser

Windcube (Leosphere)

- Windcube: definition of measurement position by measurement of travel time, pulsed laser
- reflected laser beam has a Doppler-shift in the frequency proportional to the wind speed component in the direction of the laser beam, reflection at particles (aerosols, dust, droplets)
- determination of all 3 wind speed components by rotation of laser beam on a cone

Data Availability

ZephIR

- 65m: 99.7% valid data of horizontal wind speed component
- 124m: 96.1% valid data of horizontal wind speed component

Windcube

- improved optics in series model has led to increase of availability
- very high rate of valid data, despite partly bad weather like heavy rain, snow, icing conditions
- vertical component invalid at rain, snow etc.

- Excellent performance at 65m height (when cloud correction applied)
- Underestimation of wind speeds at 124m height (same slope than at 65m, but different offset), problems at mist
- correction)
 same accuracy observed in all measurement heights up to 135m

no filtering applied (except of wind direction), i.e. rain data included

Power Curve Measurements via Lidar

ZephIR

Windcube

Deutsche

Wind Guard

• hub height 65m

• hub height 99m

- power curve measurement not successful at 124m hub height
 - deviations smaller than uncertainty of cup anemometer

- At single 3-second averages the detected direction is switched around
 - good statistics of 10-minute averages

Standard Deviation of Horizontal Wind Speed Component

ZephIR

- underestimation of turbulence due to spatial averaging and 3saveraging (cup-anemometer: 1saveraging)
- turbulence tracked astonishing well, despite different measurement principles of lidar and cup anemometer
- small improvement gained by reduction of scanning cycle from 8s (prototype) to 6s or 4s (series model)

standard deviation of horizontal wind speed cup [m/s]

Windcube

Deutsche

Wind Guard

Consulting GmbH

Extreme Values of Horizontal Wind Speed Component

ZephIR

- maxima are underestimated, minima are overestimated
- underestimation of extreme values due to spatial averaging and 3saveraging (cup-anemometer: 1saveraging)

Windcube

- Maxima/Minima only slightly overestimated/underestimated
- Extreme values tracked astonishing well, despite different measurement principles of lidar and cup anemometer
- small improvement gained by reduction of scanning cycle from 8s (prototype) to 6s or 4s

Vertical Wind Speed Component

ZephIR

- poor correlation
- vertical wind speed evaluation by lidar requires improvements

Comparison of 4 Windcubes (horizontal wind speed component)

Deutsche

Wind Guard

- Identical properties, good reproducibility
- S-shape of deviation between lidar and cup due to problem of spectrum analysis in first software version

Improvement of Spectrum Analysis at Windcube Deutsche WindGuard lidar before improvement △ lidar after inprovement 0 Consulting Gmb ···v-lidar - v-cup before improvement ··· v-lidar - v-cup after inprovement -- 0 uncertainty v-cup 22 5 20 y = 1.003x - 0.0044 $y = 1.003x + 0.026^{\circ}$ $R^2 = 1.000$ $R^2 = 1.000$ 18 3 16 2 uncertainty v-cup [%] v-Windcube - v-cup, -0_ v-Windcube [m/s] 14 0--0--0 A-4 40 12 10 8 -2 -3 6

-4

-5

22

• Test of new software version with improved spectrum analysis

12

v-cup [m/s]

14

16

18

20

10

• Improved accuracy over entire wind speed range

8

6

4

2

2

Δ

Overview Comparison ZephIR and Windcube

Deutsche Wind Guard Consulting GmbH

ZephIR

- high availability of valid data
- very accurate at lower measurement heights
- at larger measurement heights tendency to underestimation of wind speeds, increasing with vertical wind shear
- problematic at low mist
- Cloud correction required (improvement under test)
- turbulence intensity and extreme values are underestimated
- room for improvement by further data correction and filtering
 - accurate wind direction measurement
- vertical wind speed component not accurate (improvement needed)
 - accuracy in complex terrain needs further investigation

Windcube

- high availability up to 200m measurement height
- very accurate
- turbulence intensity and extreme values are measured astonishingly well